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6 
Orographic Effects 
 
http://www.staff.science.uu.nl/~delde102/AtmosphericDynamics.htm 
 
The role of the forecaster in the era of automated numerical weather prediction 
 
In spite of progress in the development of quantitative techniques, the conventional forecaster will have an 
important part to play. His wide experience of local and regional conditions, orographic and topographic 
influences, moisture and pollution sources, etc., will be invaluable in supplementing the machine-made 
forecasts. While the machines provide the answers that can be computed routinely, the forecaster will have the 
opportunity to concentrate on the problems, which can be solved only by resort to scientific insight and 
experience. Furthermore, since the machine-made forecasts are derived, at least in part, from idealized models, 
there will always be an unexplained residual, which invites study. It is important, therefore, that the forecaster 
be conversant with underlying theories, assumptions, and models. 
Sverre Petterssen (1956), Weather Analysis and Forecasting, volume 1, p. vii-viii. 
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6.1 Flow over mountains: Froude number 
 
The “unexplained residual, which invites study”, referred to by Sverre Pettersen in 1956 
(quoted above), is frequently associated with effects due to the interaction of the atmosphere 
with mountains, valleys and coast lines. This interaction produces weather phenomena such 
as stationary lee buoyancy waves, downslope windstorms, “föhn”, lee vortices, vortex 
streets, katabatic winds and the sea/land breeze. An example of a lee vortex is shown in 
figure 1.4. 
 Horizontal dimensions of mountain ranges are typically in the order of L≈100-1000 
kilometres. An air-parcel, travelling at a typical speed, u0, of about 10 m s-1 in the 
troposphere, takes L/u0≈3-30 hours to cross a mountain range with these dimensions. The 
response of the atmospheric flow pattern in the vicinity of the mountain depends on the 
imposed timescale, L/u0, of the disturbance (or forcing) relative to the time-scales associated 
with the natural periods of response of the atmosphere, i.e. the period associated with 
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buoyancy waves, 2π/N (eq. 1.72), and with inertial waves, 2π/F (eq. 1.96). If u0, N and F are 
constant, we can distinguish several regimes: 
(i) Potential flow regime (L/u0<2π/N). In this case the atmosphere is forced at a frequency 
exceeding the cut-off frequency, N (chapter 3). The reaction of the atmosphere is basically 
“evanescent” (section 3.3), i.e. the air-parcels follow the topography exactly, while the 
amplitude of the vertical displacements decays with height. 
(ii) Wave regime (L/u0 is not much greater than 2π/N and significantly smaller than 2π/F). 
If the atmosphere is forced with a frequency approaching N, buoyancy waves are generated 
in which air-parcels oscillate nearly vertically. For lower frequencies (<N) air-parcels are set 
into a more oblique buoyancy oscillation in which effects due to the Coriolis force become 
increasingly important as the frequency approaches F. An indication of the existence of 
(stationary) buoyancy oscillations excited by mountains is given in figure 6.1. 
(iii) Balanced flow regime (L/u0 is of the same order of magnitude as, or greater than, 
2π/F). The frequency of forcing lies outside the range of possible free buoyancy-inertia 
oscillations. Rossby waves (section 1.37) are generated instead. “Potential vorticity 
dynamics” is important in this regime. 

 
FIGURE 6.1. The vertical velocity associated with mountain generated trapped buoyancy waves. This is a 
subjective analysis of the vertical velocity in the vertical plane oriented along a bearing of 042 degrees and 
passing through Eskmeals (Lake district, England). The analysis is based on the measurements made with five 
sondes. The dashed lines show the paths of the five sondes and the shading indicates regions where w>1 m s-1. 
The dominant horizontal wavelength is approximately 20 km and the amplitude of the wave has a maximum at 
a height of about 3 km, with vertical velocities of up to 3.5 m s-1. Above 5 km the wave amplitude becomes 
small and the phase lines have an upstream tilt with height. (from G.Shutts and A.Broad, 1993: A case study of 
lee waves over the Lake District in northern England. Q.J.R.Meteorol.Soc, 119, 377-408). 
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 The first two cases can be defined also in terms of a Froude number, Fr, defined as  
 

€ 

Fr =
2πu0
LN

 . (6.1) 

  
The evanescent regime corresponds to Fr>1, while the wave regime corresponds to Fr≤1. At 
larger time-scales the influence of the Earth's rotation becomes increasingly important. 
Therefore, the inertial frequency becomes the relevant time-scale instead of the Brunt-
Väisälä frequency. Thus, the latter regime can be defined in terms of a Rossby number, 
 

€ 

Ro =
2πu0
LF

 .  (6.2) 

 
Regime (iii) is characterized by Ro of order 1 or less. 
 
 
6.2 Stationary and transient response 
 
The basis of present-day theories on mountain waves was layed in the 1940’s and 1950’s, 
principally by Queney, Scorer and Long171. The approach of the former two authors, 
however, was quite different from that of the latter author. Queney and Scorer tackled the 
problem by applying the linear theory of a continuously stratified fluid. In contrast, Long 
used the shallow water equations (chapter 5). 
 There is, however, one point of resemblance. All three authors were concerned almost 
exclusively with the "stationary" or “steady” response of the air-flow to forcing by 
mountains. They neglected the "transient" response. The term "stationary" means that local 
time-derivatives are zero. For waves this implies that the horizontal phase velocity, cx, is 
zero, therefore that waves-crests do not propagate.  
 The difference between the transient and the stationary response as well as several other 
typical effects of mountains on fluid flow can be illustrated with the help of the one-layer 
“hydraulic” model, described in section 5.2, assuming that hs≠0 and retaining for the 
moment the derivatives with respect to y. In fact, we assume that hs depends only on the x-
coordinate. The governing equations are 
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du
dt

= −g ∂
∂x

h + hs( ) + fv  , (6.3a)       (6.3a) 
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dv
dt

= −g ∂h
∂y

− fu  (6.3b)        (6.3b) 

€ 

dh
dt

= −h ∂u
∂x

+
∂v
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  . (6.3c)        (6.3c) 

 
Let us assume that f is constant and that 

                                                
171Queney, P., 1948: The problem of air-flow over mountains. A summary of theoretical results. 
Bull.Amer.Meteorol.Soc., 29, 16-25. 
Scorer, R.S., 1949: Theory of waves in the lee of mountains. Q.J.R.Meteorol.Soc., 75, 41-56. 
Long, R.R., 1953: Some aspects of the flow of stratified fluids. I A theoretical investigation. Tellus, 5, 42-57. 
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€ 

h = H y( ) + h' x,t( )  (6.4a)        (6.4a) 
 
and 
 

€ 

u = ug + u' x, t( ) ,  v = v ' x,t( ) ,  (6.4b)       (6.4b) 
 
where the time-independent state conforms to geostrophic balance, i.e. 
 

€ 

g ∂H
∂y

= − fug  . (6.5) 

  
In other words, as in section 5.5, we assume the existence of a time-independent meridional 
geopotential gradient, which is maintained by external forcing. The associated pressure 
gradient force is in balance with Coriolis force associated with a time-independent zonal 
geostrophic flow, ug. 
 The equations governing the dynamics of the "shallow water" layer flowing over the 
orography are (eq. 6.3a-c) 
 

€ 

∂u
∂t

+ u ∂u
∂x

= −g ∂
∂x

h + hs( ) + fv  , (6.6a) 

 

€ 

∂v
∂t

+ u ∂v
∂x

= − f u − ug( )  , (6.6b)  

€ 

∂h
∂t

= −
∂hu
∂x

− v ∂H
∂y

. (6.6c) 

 
Let us place a bell-shaped mountain with a maximum height, Hb, at x=3000 km. Starting 
with a mean geostrophic flow velocity, ug, and a free surface that is horizontal in the x-
direction (but with a constant negative slope in the y-direction!), we can integrate eqs (6.6a-
c) numerically to find out what happens afterwards. The result is shown in figure 6.2. The 
flow is partly blocked by the mountain. As a result of this fact, transient gravity-inertia 
waves are excited, which propagate in opposite directions away from the mountain. Initially, 
the wave propagating downstream is a wave of depression, whereas the wave propagating 
upstream is a wave of elevation. After 48 hours, however, this qualification does not hold 
anymore, due to dispersion caused by the Coriolis-effect. The upstream gravity-inertia wave 
leaves behind a region with lower flow-velocities and higher free-surface elevations. Thus, a 
horizontal pressure gradient is set up with high-pressure upstream and low-pressure 
downstream from the mountain. Due to this pressure gradient, the fluid is accelerated 
(∂u/∂x>0) up the mountain. This acceleration (or divergence) induces a negative meridional 
(y-) component in the flow through the Coriolis-effect and also a negative relative vorticity 
upstream of the mountain crest. In the lee of the mountain the fluid is decelerated (∂u/∂x<0) 
with the opposite effect on the relative vorticity, i.e. a “lee-trough” or “lee-cyclone” is 
formed.

  It is somewhat counter-intuitive to observe that there is mass-divergence upstream of 
the mountain crest and mass-convergence downstream of the mountain crest. Nevertheless, 
this fact can be easily deduced from the governing equations (eqs. 6.6a-c). If we assume a 
stationary state (local time derivatives equal to zero) in the vicinity of the mountain, we can 
derive an equation for the divergence (du/dx). By eliminating ∂h/∂x from (6.6a) and (6.6c), 
we obtain the following expression for the divergence or acceleration. 
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FIGURE 6.2a. Hovmöller diagrams displaying the evolution in time of the x-component and y-component of 
the flow velocity, height of the free surface above "sea level" and the divergence in a numerical integration of 
eqs. 6.3a-c (the one-layer “hydraulic” model) starting with a horizontal free surface everywhere, a constant 
geostrophic velocity, ug = 12 m s-1, and a bell-shaped mountain with a maximum height, Hb, of 3000 m in the 
middle of the domain. The mountain profile is shown in figure 6.2b. The fluid depth far from the mountain is 
10000 m.  The values of other parameters are g=1 m s-2 and f=0.0001 s-1. The magnitude of the Froude number 
(see eq. 6.8) far upstream is 0.126, while over the mountain crest it reaches a maximum value of 0.212. 
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−
fv
g
1−

ug
u

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  .       (6.7) 

 
The Froude number, Fr, in the context of this model is defined as, 
 

€ 

Fr ≡ u
gh

 .          (6.8) 
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FIGURE 6.2b. Height of the earth’s surface “above sea level” and perturbation of the height of the free 
surface at t=48 hours as a function of x. The mountain crest is located at x=3000 km. For the values of the other 
parameters, see figure 6.2a. 
 

 
FIGURE 6.3. Regime diagram of the flow of a shallow layer of fluid with constant density over an isolated hill 
as a function of Froude number far upstream and the non-dimensional height of the hill (adapted from Baines, 
P.G., 1987: Upstream blocking and airflow over mountains. Ann.Rev.Fluid Mech., 19, 75-97). 
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According to (6.7), du/dx becomes infinite if Fr=±1 and  dhs
dx  - fvg   1 - ug

u
≠0. Assuming for 

simplicity that f=0 and, given the fact that 0<Fr<1 far upstream, we would expect du/dx>0 if 
dhs/dx>0 and du/dx<0 if dhs/dx<0, which is exactly what is observed in figure 6.2a. This is 
an example of so-called subcritical flow, for which Fr<1.  
 The other flow regime (for which Fr>1) is termed supercritical. In this regime we would 
expect mass convergence and deceleration of the flow on the upstream side of the mountain 
crest and mass divergence and deceleration of the flow on the downstream side of the 
mountain crest.  
 Of special interest are the cases where there is a regime transition, such as when there is a 
transition from supercritical flow to subcrtical flow in the lee of the mountain giving rise to 
a so-called hydraulic jump. In fact this situation only arrises when the flow is subcritical 
far upstream and the mountain height is large relative to the fluid depth. This apparently 
induces acceleration downslope as well as upslope with a subscritical to supercritical 
transition somewhere near mountain crest and a supercritical to subcritical transition in the 
lee of the mountain. The second transition gives rise to a hydraulic jump.  
 The different regimes characterizing single-layer flow over an obstacle in a non-rotating 
fluid (f=0) are summarized in figure 6.3. Except for Fr, the relative height of the obstacle 
also governs the behaviour of the fluid. The diagram presented in figure 6.3 has been 
obtained on the basis of theoretical, experimental and numerical investigations carried out 
by many investigators.  
 
 
6.3 Severe downslope winds 
 
The hydraulic model has been applied to the atmosphere, in particular to explain the violent 
downslope winds and turbulence observed in the flow over the Sierra Nevada range in the 
United States. Intense downslope windstorms are observed frequently in many parts of the 
world. One of the most well known examples is the so-called "Bora" wind occurring along 
the steep coast of Croatia. This windstorm develops when cold continental air is forced over 
the coastal mountain range and out over the relatively warm Adriatic Sea. The acceleration 
of the flow starts already where the mountains begin to rise and continues over the crest and 
down the other side172. The concept of blocking and of transition from subcritical to 
supercritical flow offers a very plausible explanation of these phenomena. This appears to be 
confirmed by numerical simulations of two-dimensional continuously stratified flow over a 
mountain-ridge173. 
 Very violent downslope winds have also been observed near Boulder, Colorado. In one 
case, which is particularly well documented by Lilly (1978)174, windspeeds of up to 55 m s-1 
were measured on the eastern slopes of the Rocky Mountains (see figure 6.4). The analysis 
of the potential temperature field for this case, displayed in figure 6.4b, suggests that the 
hydraulic model gives a good first order accurate description of these phenomena.  

                                                
172 Smith, R.B., 1987: Aerial observations of the Yugoslavian Bora. J.Atmos.Sci., 44, 269-297.  
173 Durran, D.R., 1986: Another look at downslope windstorms. Part I:Development of analogs to 
supercritical flow in an infinitely deep, continuously stratified fluid. J.Atmos.Sci.,43, 2527-2543. 
174 Lilly, D.K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain 
wave. J.Atmos.Sci., 35, 59-77. 
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FIGURE 6.4. (a) Analysis of the westerly wind component (m s-1) on 11 January 1972, made from aircraft 
flight data and radiosondes. (b) Analysis of the corresponding potential temperature field (solid lines). The 
dashed lines show the aircraft track, with periods of significant turbulence shown by pluses. The heavy dashed 
line separates data taken by the Queen Air at lower levels before 2200 UT from that taken by the Sabreliner in 
the middle and upper troposphere after 0000 UT (12 January) (from Lilly, D.K., 1978: A severe downslope 
windstorm and aircraft turbulence event induced by a mountain wave. J.Atmos.Sci., 35, 59-77). 
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 An effect that appears crucial in producing strong downslope winds is the blocking of the 
low level air-flow by the mountains. If the air cannot flow around the mountain, the pressure 
upstream from the mountain will rise until the air is able to flow over the crest. Another 
factor that seems to be of importance is the presence of an inversion layer such as the 
inversion layer between 500 and 600 mb in figure 6.4b. The pressure gradient, which is set 
up due to the blocking, is confined principally to levels below the inversion. Therefore, only 
the layer below the inversion is accelerated. Figure 6.3 demonstrates that the thickness of 
this layer relative to the mountain height determines the response on the lee-side. 
 
 
6.4 Gap flows 
 
An analogous situation arises in a valley with a constriction (figure 6.5a). Blocking by the 
constriction can induce a transition from subcritical to supercritical flow leading to 
continued acceleration of the air down the valley when the valley-width increases. It has 
been hypothesized175 that this effect produces the famous "Mistral" wind in the Rhone 
valley in southern France. The Mistral is mostly observed in circumstances with a northerly 
"geostrophic" airflow, which is blocked by the Alps (figure 6.6). Observations show that 
winds are relatively weak upstream from the constriction, near Valence, while there is a 
sudden increase in the wind downstream from the constriction. The acceleration continues 
until a maximum wind speed is reached about 100 km downstream from Valence (figure 
6.5b). A sudden transition back to calmer conditions, similar to a hydraulic jump, is 
frequently observed near Nimes, about 150 km from Valence. Observations seem to indicate 
that a potential temperature inversion at relatively low levels is required to produce violent 
mistral winds.  
 

  
 
FIGURE 6.5a. Height of the Rhone valley walls. Isopleths are seperated by 100 m using the orography given on 
a grid with a 1 km mesh (from Pettre, P., 1982: On the problem of violent valley winds J.Atmos.Sci., 39, 542-
554). 

                                                
175Pettre, P., 1982: On the problem of violent valley winds J.Atmos.Sci., 39, 542-554. 
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FIGURE 6.5b. 10-minute average wind speed and potential temperature profiles at Feurs ( ), Cuisery ( ), 
Satolas (Lyon) ( ), Valence ( ), Orange ( ) and Nimes ( ) for 23 November 1977 (from Pettre, P., 1982: 
On the problem of violent valley winds J.Atmos.Sci., 39, 542-554). 
 
 

 
 
FIGURE 6.6. Winds at 925 hPa (about 700 m a.s.l.) with wind speeds greater than 8 Beaufort indicated by 
contouring, in a case of blocking of the air-flow from the north by the Alps. The air is funneled through the 
large valleys to the west and east of the Alps. The Bora is observed to the south-east of the Alps along the 
Adriatic Sea coast. The mistral is observed in the Rhone Valley and the Gulf of Lion. 
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6.5 Katabatic winds 
 
One very conspicuous aspect or property of downslope winds is that some are warm and 
others are cold. The Bora and Mistral are relatively cold winds while the well-known 
Foehn, occuring in the lee of the Alps, is warm (figure 6.7). The warmth of the Foehn has 
been attributed in the past to release of latent heat in the air rising from the ground at the 
upwind side of the mountain range. Doubt has been cast on this hypothesis176. The 
mechanism producing warm Foehn is probably identical to the mechanism producing the 
cold Bora. Although the Bora is felt as a cold wind, this is only relative to the originally 
warm air found along the Adriatic coast. The Foehn is felt as a warm wind because it 
replaces a relatively cold layer of air near the ground in the lee of the Alps. In all cases the 
air reaching the ground in the lee of the mountain range is potentially warm air coming from 
higher altitudes (figure 6.4b). 
 Mistral and Bora are sometimes referred to as a katabatic wind. The term “katabatic” is 
of Greek origin from katabatikos, meaning to go down. In most general sense, any wind 
blowing down an inclined surface can be classified as a katabatic wind.  
 
 

 
 
FIGURE 6.7. Ten minute mean wind speed (ff), temperature and and relative humidity (RH) at Altdorf on three 
days in January 2011. Altdorf is located in a valley on the north side of the Alps to the south of Zurich. The 
valley (Reusstal) is oriented in south-north direction, perpendicular to the row of main peaks of the Alps, and is 
separated by only one single ridge of high mountain peaks from the south side of the Alps. When the Foehn is 
blowing the relative humidity is very low (about 30%) and the temperature is relatively high. Data is from 
MeteoSwiss (thanks to Michael Sprenger and Hilke Lentink).  

                                                
176Siebert, P., 1990: South Foehn studies since the ALPEX experiment. Meteorol.Atmos.Phys., 43, 91-103. 
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FIGURE 6.8. Geopotential height (labeled in dm) and winds at 925 hPa on 9 January 2011 (see also figure 6.7), 
again showing the funneling of air from the south through the Rhone valley, west of the Alps (see also figure 
6.6). Also noteworthy is the gradient from south to north of about -60 m in the geopotential height across the 
Alps. The location of Atdorf is indicated by the red arrow. 
 
 Katabatic winds are best developed over the great ice sheets of Antactica and Greenland. 
The persistent radiative cooling over Antarctica, especially during the dark polar night, 
causes the surface to become colder than the free atmosphere by as much as 30–35 K. The 
surface layer air becomes negatively buoyant with respect to the free atmosphere. The cold 
air that flows down the slope of the ice sheet represents the notorious Antarctic katabatic 
winds. The size of the continent and the persistent surface cooling in winter enables the 
Coriolis effect to deflect the katabatic winds in the cross-slope direction. Channeling of air 
due to valley-shaped topography can locally enhance katabatic wind speeds. This is 
particularly true for Adélie Coast (figure 6.9) where the strongest winds on Earth are 
observed, annual mean wind speeds frequently exceed 15 m s−1. 
 Figure 6.10 shows the modeled July surface layer wind vector and directional constancy 
averaged over the period 1980–93. The directional constancy, dc, is defined as the ratio of 
the time-mean to vector-mean wind speed: 
 

€ 

dc ≡ u 2 + v 2( )1/2 u2 + v2( )1/2⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

−1

 
 
The bar denotes a time mean. The modeled surface layer wind velocities (9–14 m s−1) and dc 
(0.9–0.95) are highest in the zone where the slope of the ice sheet is steepest, while weak 
winds and low dc are found over the domes of the interior ice sheet. 
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FIGURE 6.9. Topographical features of Antarctica. Ice shelves (stippled); average July sea ice extent (light 
shaded); average January sea ice extent (dark shaded). Surface elevation (m above mean sea level) is contoured 
every 500 m. RIS: Ross Ice Shelf; FRIS: Filchner–Ronne Ice Shelf. From van den Broeke, M.R., and N.P.M. 
van Lipzig, 2003: Factors controlling the near-surface wind field in Antarctica. Mon.Wea.Rev., 131, 733-743. 
 
 
6.6 Stability of stratified shear flow and nonhydrostatic resonant lee-waves 
 
Early studies of disturbances produced by mountains were directed towards finding a theory 
which could explain the relatively small-scale non-hydrostatic lee-waves frequently visible 
as a series of parallel cloud bands (with a spacing in the order of 10 km) near mountain 
ranges (figure 6.1). Because the amplitude of these phenomena is relatively small, linear 
(Boussinesq-) theory, as described in section 2.2, is adopted to investigate this problem. 
Since the horizontal structure of the wave field is determined by the structure of the 
mountain, which is not necessarily sinusoidal, this structure is not specified a priori. In the 
following the theory is presented as a problem. 
 
 
PROBLEM 6.1. Buoyancy waves in a stationary flow over two-dimensional 
topography177. 
This problem consists of many steps, which will lead us to the dependence of the structure 
of mountain generated buoyancy waves on the mean flow and the mean temperature 

                                                
177 based on theory described by Durran (1986) (Mountain waves. In Mesoscale Meteorology and 
Forecasting. American Meteorological Society, Boston. 793 pp. (p. 472-492)).  
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FIGURE 6.10. Average July (1980–93) modelled surface layer wind vector (arrows) and directional constancy 
(colors). From van den Broeke, M.R., and N.P.M. van Lipzig, 2003: Factors controlling the near-surface wind 
field in Antarctica. Mon.Wea.Rev., 131, 733-743. 
 
stratification. The two-dimensional topography consists of a series of ridges parallel to the y-
axis. The mean state is given by a flow u0(z) in the x-direction and a potential temperature 
distribution θ0(z). We will make the Buossinesq approximation for "shallow" flow (see 
chapter 3) and neglect the Coriolis force. We can linearise the equations about the mean 
state if the orography is "gentle". This results in a system of equations, including the effect 
of the mean flow, u0(z), similar to eqs (3.16-3.20). Although we assume a variation in 
velocity with height and so imply a thermal wind, no horizontal variation of potential 
temperture is assumed. The wavelengths considered are such that the Earth's rotation can be 
ignored in its effect on the disturbance. For normal wind speeds (order 10-30 m/s) this 
restricts discussion to wavelengths less than 10-100 km.  
 
(a) The flow-pattern is stationary with respect to the topography. This steady state 
assumption implies that ∂(...)/∂t=0. This gives a system of 4 equations with 4 unknowns (u, 
w, P and B) with P=θmΠ and B=θg/θm. Reduce this system of equations to one equation for 
w.  
 
(b) Define the terrain profile as an infinite set of ridges as follows: 
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h x( ) = Re h0 exp ikx( ){ }, 
 
where h0 is the complex amplitude. Because w=dh/dt, at the Earth's surface an expression 
for w(x, 0) can be derived. Show that an approximation to this expression is  
 
w(x,0)≈iu0h0kexp{ikx}. 
 
(c) The equation for w(x,z) derived in (a) has a solution of the form w(x,z)=W(z)exp(ikx). 
Substituting this solution yields an equation of the form 
 

€ 

d2W
dz2

+ l2 − k2( )W = 0 ,         (6.9) 

 
where l is the Scorer parameter178 
 

€ 

l2 ≡ −D2u0
u0 − cx

+
k2N2

α2 u0 − cx( )2
 ,        (6.10) 

 
where D2=d2/dz2. What is the solution to this equation? 
 
(d) What is the character of the solution if µ2 ≡ l2-k2 >0 and if µ2 ≡ l2-k2 <0? 
 
(e) Write down the solution in these two cases and draw the streamlines for each case. 
Assume h0 is real. Do the phase lines of the wave tilt upstream or downstream with height in 
the case of broad ridges (k2<l2)? 
 

 
FIGURE 6.11 (a) The crests of "ship" waves behind an isolated obstacle at high Froude numbers. (b) Vortices 
shed alternately by the same obstacle at low Froude numbers. 

                                                
178Scorer, R.S., 1949: Theory of waves in the lee of mountains. Q.J.R.Meteorol.Soc., 75, 41-56. 
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6.7 Flow around mountains 
 
When air encounters a three-dimensional obstacle, it can flow both over and around the 
obstacle. If the fluid is stably stratified, a so-called "dividing streamline" can be formed 
which separates the upper layer flowing over the hill from the lower layer flowing around 
the hill. For a simple background flow with constant u0 and constant N, the dividing 
streamline height, hc, is given by 
 

€ 

hc = Hb 1−"Fr"( ) ,         (6.11) 
 
where "Fr"  is defined in yet another way according to 
 

€ 

"Fr"≡ u0
NHb

 ,          (6.12) 

 
where Hb is the maximum height of the obstacle179. Here the Froude number "Fr" has been 
placed between inverted commas in order to distinguish it from the other Froude numbers 
defined in (6.1) and (6.8). There have been some critical comments in the literature on the 
many definitions of the Froude number used in different contexts180. It might be best to 
reserve the term, Froude number, for the ratio of the flow velocity to the phase speed of 
some wave, as in (6.8). The "Froude number" defined in (6.12) clearly does not meet this 
requirement. Rather, it is a measure of the ratio of the mean velocity to the perturbation 
velocity induced by the mountain, and thus a measure of nonlinearity. We will not decide 
here which is best definition of Fr, since the different definitions are still used by the 
different specialists studying flow over and around mountains. Perhaps it is best to refer to 
the inverse of "Fr" as the non-dimensional mountain height or normalized moutanin height.  
 According to eq. 6.11 a dividing streamline will only exist for "Fr"<1. The air below the 
height, hc, will have insufficient kinetic energy to overcome the potential energy barrier, 
induced by the stable stratification, and to flow over the mountain top. The air flowing 
around the obstacle will form counter-rotating vortices in the lee, while the air flowing over 
the obstacle will produce gravity waves. These two characteristic flow patterns are easily 
recognized in the cloud pattern on satellite photographs181. In high "Froude number" flow 
over relatively steep islands the gravity waves are frequently seen as so-called "ship waves" 
(see figure 6.11a). In low "Froude number" flow, lee-vortices form especially when there is 
a strong potential temperature inversion below the mountain-top. These vortices are shed 
alternately, forming vortex streets (see figure 6.11b). The similarity with the Karman 
vortex streets, observed in fluid flow behind a cylinder in the laboratory is remarkable182. It 
is, however, not entirely clear whether the two phenomena can be attributed to the same 
mechanism. For the Karman vortices the production of vertical vorticity is due to the viscous 
stress at the side walls of the cylinder and the subsequent viscous boundary-layer separation.  

                                                
179 Etling, D., 1989: On atmospheric vortex streets in the wake of large islands.  Meteorol.Atmos.Phys., 41, 
157-164. 
180 Baines, P.G., 1987: Upstream blocking and airflow over mountains. Ann.Rev.Fluid Mech., 19, 75-97. 
181 Scorer, R.S., 1986: Cloud Investigation by Satellite. Ellis Horwood Series in Environmental Science. 
182 Kundu, P.K., 1990: Fluid Mechanics. Academic Press inc., 638 pp. 
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FIGURE 6.12. Steady state streamlines at the lower surface for "Fr" = (a) 2.2, (b) 0.66, (c) 0.22, (d) 0.055. 
Concentric contours in the centre of the domain represent the height of the obstacle with contour interval 
0.25Hb (Smolarkiewicz and Rotunno, 1989). Hb= 0.12 L . 
 
 Laboratory experiments have revealed vortex shedding in a stably stratified flow around 
obstacles with slopes of 1/4 to 2. Because the steepest islands have slopes of 1/5 or less, the 
experimental results cannot be carried over directly to the atmosphere183. 
 By numerical simulation stress-free stratified flow past a bell-shaped (round) three-
dimensional hill, neglecting the effect of the earth's rotation) it can be shown that lee-
vortices are produced only when "Fr"<0.5 (figure 6.12). In figure 6.13 it can be seen that 
gravity waves are produced only when "Fr" is large. The domain is probably too small to 
verify whether the wave crests form a ship wave pattern or to investigate vortex shedding184.  

                                                
183 Etling, D., 1990: Mesoscale vortex shedding from large islands: A comparison with laboratory 
experiments of rotating stratified flows. Meteorol.Atmos.Phys., 43, 145-151. 
184Smolarkiewicz, P.K., and R. Rotunno, 1989a: Low Froude number flow past three-dimensional obstacles. 
Part I: baroclinically generated lee vortices. J.Atmos.Sci., 46, 1154-1164. 



 

 

443 

 
FIGURE 6.13. Steady state streamlines in a vertical cross section through the centre plane for "Fr" = (a) 2.2, (b) 
0.66, (c) 0.22, (d) 0.055 (Smolarkiewicz and Rotunno, 1989). Hb= 0.12 L . 
 
 Later studies have shown that the shedding of vortices is due to a hydrodynamic 
instability, which results from the presence of potential vorticity in the wake of the obstacle. 
This potential vorticity is created due to internal dissipation and diffusion in the fluid. 
Dissipation occurs in a compact region of breaking gravity waves slightly downstream of the 
mountain crest185. 
 A characteristic feature of low "Froude number" flow is the zone of flow-reversal on the 
windward side of a three-dimensional obstacle. Here too, numerical model experiments 
indicate quite clearly that frictional boundary layer separation is not needed for upwind 
stagnation and flow-reversal. The flow-reversal is only observed when the aspect ratio, β 
(across-stream length divided by the along-stream length), is greater than one. Lee-vortex 

                                                
Smolarkiewicz, P.K., and R. Rotunno, 1990: Low Froude number flow past three-dimensional obstacles. Part 
II: upwind flow reversal zone. J.Atmos.Sci., 47, 1498-1511. 
185Schär, C., and D.R. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flows 
past isolated topography. J.Atmos.Sci., 54, 534-554. 
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formation seems to be independent of β, although the lee-vortices become much larger and 
more marked when β increases.  
 Topography can influence the flow on the meso-scale in many ways, especially in 
combination with diabatic heating (thermally induced valley and slope winds; katabatic 
winds) and friction.  
 
 
6.8 Lee-cyclogenesis 
 
The regions exhibiting the most intense cyclogenesis (=the formation of a cyclone) typically 
lie adjacent to mountain regions, such as to the east of the Rocky-mountains and to the south 
of the European Alps (figure 6.14). Cyclogenesis to the south of the Alps has been 
investigated extensively. It typically occurs when cold air approaches the Alps from the 
north-west. Below the 700 hPa level this cold air is blocked by the mountains and is forced 
to flow around, especially through the Rhone valley to the west. Above 700 hPa the cold air 
continues its journey southward over the Alps. This effect generates extreme potential 
instability over the Po valley in Italy in the summer season, when the valley is filled (at low 
levels) with very humid and warm air. The blocking of the cold air also leads to positive 
surface pressure tendencies to the north of the Alps and negative surface pressure tendencies 
to the south. In particular, an isallobaric minimum is generated over the Gulf of Genoa 
(figure 6.15a). The attendant isallobaric wind (figure 6.15b)186 is convergent in this region 
and, thus, leads to cyclogenesis at levels below the mountain crest. In the example shown in 
figure 6.15a cyclone of appreciable intensity forms within 12 hours at 850 hPa (figure 
6.15c). The flow associated with the newly formed cyclone distorts or deforms the front as 
happens in a growing baroclinic wave (chapter 10), i.e. there is warm air advection on the 
eastern side and cold air advection on the western side. We will see in chapter 9 that this 
pattern of temperature advection is advantageous for further growth of the cyclone. In fact, 
the Alpine mountain range itself distorts the front and this in itself may induce cyclogenesis. 
It is probably no coincidence that cyclogenesis is usually observed in regions where the 
thermal or physical properties of the earth’s surface promote the horizontal distortion of 
isentropes, such as near coasts and near mountains and hills (figure 6.14). Therefore, it 
seems that lee cyclogenesis is initiated due to isollabaric effects induced by blocking of cold 
air and is subsequently intensified by static destabilization (due to cold air passing the ridge 
at upper levels) and by baroclinic effects (rotation of the isentropes). Probably latent heat 
release in clouds over the relatively warm Mediterranean Sea also contributes to the 
intensification of the lee-cyclone. The most intense cyclogenesis to the south of the Alps is 
observed in northerly flow when a so-called “positive potential vorticity anomaly” 
approaches the Alps from the north. The significance of latent heat release and potential 
vorticity in the process of cylogenesis will become clear in chapter 7 (Box 7.2). 
 
 
6.9 Stationary orographic Rossby waves 
 
The standard textbook model for large-scale zonal (west-east) flow over orography is based 
on the principle of conservation of potential vorticity following the adiabatic motion of fluid 
columns over an infinite ridge (figure 6.13). If we adopt the one-layer model, described in 
section 6.2, and assume that there is a uniform zonal flow with relative vorticity, ζ=0 

                                                
186 See section 1.34 for the definition of isallobaric wind. 
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upstream of the mountain barrier, we can use this conservation principle to deduce some 
qualitative features of the response of the zonal flow to the orography. Potential vorticity 
within the context of this model is defined as 
 

€ 

ζpot =
ζ + f
h

. 

 
If we neglect the effect of upstream blocking we can immediately say that as the fluid 
column begins to mount the barrier its depth decreases. The relative vorticity, ζ, must than 
become negative. The air column thus acquires anticyclonic curvature and moves southward 
as shown in figure 6.13. When the air column has passed over the mountain and returned to 
its original depth, it will be south of its original latitude so that the Coriolis parameter, f, (we 
now assume that f depends on latitude) will be smaller and the relative vorticity must be 
positive. Thus, the streamlines will curve poleward. The column will then move downstream 
conserving potential vorticity by following a wavy constant vorticity trajectory in the 
horizontal plane. This wave phenomenon is referred as a Rossby wave and, since the wave 
is excited by orography, it is called an orographic Rossby wave in this case. 
 

 
FIGURE 6.11. Percentage frequency of occurrence of cyclogenesis in squares of 100000 km2 in winter (1899 to 
1939) (from Petterssen, S., 1956: Weather Analysis and Forecasting. Second edition. MacGraw-Hill). 
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FIGURE 6.12. (a) Sea level isobars (thick grey lines, labeled in hPa) and sea level isallobars (thin solid lines, 
labeled in hPa per 3 hours), November 6, 1999, 12 UTC. (b) isallobaric wind (bold arrows) at sea level 
between 6 and 12 UTC on November 6, 1999 and geostrophic wind (thin arrows) at 12 UTC, November 6, 
1999. Analysis is based on an interpolation of the surface observations to a "lat-lon"-grid of 20 by 23 points 
with an interval 0.75° in the zonal direction and 0.5° in the meridional direction. The boundaries of the domain 
shown are at 2°W, 16°E, 50°N and 39.5°N. The letter "L" marks the centre of the incipient lee cyclone at sea-
level. The thick black line marks the mountain ridge higher than 2000 m. 
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FIGURE 6.12c. Distribution of temperature (in colour) and height (black contours) at 850 hPa during an 
episode of lee-cyclogenesis over the Gulf of Genoa on 6 November 1999. Upper panel is the analysis of 12 
UTC; lower panel is the analysis of 18 UTC. Height is labeled in dm and temperature is labeled in °C. The 
significance of warm and cold advection for cyclogenesis is explained in chapters 9 and 10. Source of picture: 
http://www.wetter3.de/Archiv/. 
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FIGURE 6.13. (a) Height-longitude cross-section and (b) plan view of streamlines for stationary disturbance 
created by flow of an initial zonal current across a large scale mountain barrier in the northern hemisphere 
(from Holton, J.R., 1993: The second Haurwitz Memorial Lecture: Stationary Planetary Waves. 
Bull.Amer.Meteorol.Soc., 74, 1735-1742). 
 
 In order to make the above arguments more quantitative, we make the rigid lid 
approximation (figure 6.14) by assuming that 
 

€ 

h = H y( ) − hs x( )            (6.13) 
 
This implies that blocking effects are ruled out. The continuity equation (6.3c) then becomes 
 

€ 

∂hu
∂x

+
∂hv
∂y

= 0           (6.14) 

 
or 
 

€ 

H − hs( ) ∂u
∂x

+
∂v
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − u

∂hs
∂x

+ v ∂H
∂y

= 0        (6.15) 

 
The momentum equations are as (6.3a,b): 
 

€ 

du
dt

= −g ∂
∂x

h + hs( ) + fv ,         (6.16a) 

€ 

dv
dt

= −g ∂h
∂y

− fu ,          (6.16b) 
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FIGURE 6.14. A model of flow over a mountain barrier (see the text for further explanation). 
 
 
with 
 

€ 

d
dt

=
∂
∂t

+ u ∂
∂x

+ v ∂
∂y

 .         (6.17) 

 
From (6.16a,b) we derive an equation for the vertical component of the relative vorticity, 
ζ(=∂v/∂x-∂u/∂y). The result is 
 
dζ
dt   =  - f+ζ  ∂u

∂x  + ∂v∂y  - βv ,  

 
where β=df/dy. To this equation we add a term on the r.h.s. (=-rζ), which represents 
damping,  where r is the damping rate coefficient (s-1), as follows: 
 

€ 

dζ
dt

= − f +ζ( ) ∂u
∂x

+
∂v
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − βv − rζ  .       (6.18) 

 
The reason for doing this will become apparent later in this section. The continuity equation 
(6.15) with  
 

€ 

ug = −
g
f0
dH
dy

          (6.19) 

 
is 
 

€ 

H − hs( ) ∂u
∂x

+
∂v
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − u

∂hs
∂x

−
f0ug
g

v = 0  .      (6.20) 

 
Now, assuming a stationary state, (6.18) with (6.20) becomes 
 
 

€ 

u ∂ζ
∂x

+ v ∂ζ
∂y

= −
f +ζ( )
H − hs( )

u ∂hs
∂x

+
f0ug
g

v
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − βv − rζ  .     (6.21) 
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FIGURE 6.15. Observed stationary (time mean) planetary waves at 45° latitude in the northern hemisphere, in 
terms of the meridional component of the velocity (labeled in m/s), induced by mountains and other 
irregularities in the Earth’s surface (S. Manabe and T.B. Terpstra, 1974: The effects of mountains on the 
general circulation of the atmosphere as identified by numerical experiments. J.Atmos.Sci., 31, 3-42). 
 
 
To this equation we apply the quasi-geostrophic approximation187, which in this case 
implies that u≈ug, v≈vg, ζ≈ζg=∂vg/∂x, f=f0+βy ≈f0, ζg<<f0, h=H0+(dH/dy)y-hs≈H0 (implying 
that hs<<H) resulting in the following linear equation 
 

€ 

d2vg
dx2

+ r
dvg
dx

+
β
ug

+
1
a2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ vg = −

f0
H0

dhs
dx

 ,      (6.22) 

 
where a is the Rossby radius of deformation (chapter 5), defined as 
 

a ≡ gH0
f0

  .  

 
Suppose that 
 

€ 

hs x( ) = h0 exp ikx( ); vg x( ) = vg0 exp ikx( ); ζg x( ) = ζg0 exp ikx( ) ,   (6.23) 
 
so that 
 

€ 

vg0 = −ikζg0  ,          (6.24) 
 
then (6.22) yields 
 

€ 

ζg0 =
f0h0

H0
β
ug

+
1
a2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ − k

2 + ikr
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

 .       (6.25) 

 
From this we see that, if there is no damping (r=0), the relative vorticity is exactly in phase 
with the orography if 

                                                
187 The quasi-geostrophic approximation is explained in detail in chapter 9. 
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€ 

k2 <
β
ug

+
1
a2

 ,          (6.26a) 

 
or exactly out of phase with the orography if 
 

€ 

k2 >
β
ug

+
1
a2

 .          (6.26b) 

 
In other words, in theory, troughs are observed in westerly flow over large scale 
mountain barriers, while ridges are observed in westerly flow over small scale 
mountain barriers.  
 Eq. 6.25 also reveals that damping has the effect of introducing a phase shift between the 
orography and the wave. Explicit numerical solutions of (6.22) with realistic orography (for 
instance a single mountain barrier and not an infinite series of parallel ridges and valleys) 
and with r-1= 5 days, show that the phase shift is such that the trough is located on the lee 
side of the mountain barrier, which is in accord with the observations (figure 6.15)188. The 
average wave pattern observed in the mean westerly flow is therefore identified as a 
stationary orographic Rossby wave, although it must be stated that thermal inhomogeneities 
in the zonal direction (i.e. differences in temperature and thermal inertia between continents 
and oceans) also explain at least part of the stationary wave pattern observed in figure 6.15.  
 Note, in figure 6.15, that the wave tilts backward with increasing height. This phase shift 
in the vertical direction is an important property of these waves, because it can be shown to 
be related to the meridional heat transport (chapter 11). 
 
 
 
 

                                                
188 For further reading see the following publications: 
Charney, J.G. and A. Eliassen, 1949: A numerical method for predicting the perturbations of the middle 
latitude westerlies. Tellus, 1, 38-54. 
Bolin, B., 1950: On the influence of the earth's orography on the general character of the westerlies. Tellus, 2, 
184-195. 
Held, I.M., 1983: Stationary and quasistationary eddies in the extratropical troposphere: theory. In Large-scale 
dynamical processes in the atmosphere. Edited by B.J. Hoskins and R.P. Pearce, Academic Press., p. 127-
168. 
Holton, J.R., 1993: The second Haurwitz Memorial Lecture: Stationary Planetary Waves. 
Bull.Amer.Meteorol.Soc., 74, 1735-1742. 
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ABSTRACT OF CHAPTER 6 

 
Chapter 6 is concerned with the interaction of hills, mountains and valleys with the motion 
of air in the atmosphere. Very diverse local wind systems are the result of this interaction. 
Well-known examples of such wind systems in Europe are Foehn, Mistral and Bora winds. 
The Bora can develop into a downslope windstorm, a non-linear effect which can be 
understood with the help of the relatively simple one-layer constant density “hydraulic 
model”.  
 The fundamental parameter that governs the response of the air-flow over orography is 
the Froude number. There are several definitions of this parameter, but basically it 
represents the ratio of the large-scale background wind perpendicular to the mountain range 
or upstream of the valley to an intrinsic velocity that may be a phase velocity of waves 
(gravity or buoyancy waves) that are excited by the interaction of the basic flow with the 
orography. 
 The most important wind system that is related to orography is the katabatic wind, 
which is driven by cooling of air just above an inclined snow or ice surface, such as a 
glacier, or an ice cap. The wind regime over the huge ice caps of Greenland and Antarctica 
is dominated by the katabatic wind. Therefore, katabatic winds play an important role in 
climate because they largely determine the energy balance of these large ice caps and their 
rate of melt. 
 The response of air-flow around a mountain consists of phenomena such as ship waves, 
vortex streets and, on a larger scale, lee-cyclones.  
 The response to the largest mountain ranges, such as the Rocky-mountains, consists of 
orographic Rossby waves. The motion associated with these large scale stationary waves 
takes care of a large portion the heat flux from equator to poles. 
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